Welcome To Pine Lake Laboratories.
Challenges Today. Solutions Tomorrow.

Working with clients to assist in bringing innovative, safe new medicines and medical devices to patients in need.

GET A QUOTE

Ask a Question

Our team of experts are waiting to hear from you.
Pine Lake Laboratories is here to help.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Categories

August 16, 2018

Preparing to Adopt a Quality Agreement at a CRO: Check That Your Quality House is in Order

There should already be in place a strong quality program at the CRO and the quality agreement must make a good fit to this program.  Those concerns (terms) that are rather common to Quality Agreements should already be addressed in the existing quality program at the CRO or else consideration must be given to incorporating them into the existing program.  This approach is distinctly different and better than leaving them only in the quality agreement.  To leave important concerns only in the quality agreement is tantamount to instructing the lab to only consider doing such quality work when working on this particular client’s project.

READ
August 13, 2018

Possible Outcomes of a Leachables Study

At the end of the stability study, results from the leachables analyses will be reported.  There are two basic outcomes to a leachables study:

  1. Good news: At the end of the stability study, all leachables were below the AET.
  • No action needed
  • Container closure system has no impact on shelf life

  1. Bad News: One (or more) leachable exceeded the AET at or before the intended shelf life.
  • Assess toxicity of the leachable to determine if SCT was appropriate. If SCT increases after assessment, AET can increase.
  • If after confirmation and toxicity assessment the leachable is still above the AET, shelf life must decrease to time when leachable was below AET.
  • In worst case scenario, a new container closure system may be needed.

READ
August 6, 2018

Dr. Michael Ruberto, E&L Retained Consultant

Pine Lake Laboratories is fortunate to have Dr. Michael Ruberto as a retained consult available to support all extractable and leachable studies.

Dr. Ruberto is the President of Material Needs Consulting, LLC  which provides consulting services to manage the development and commercialization of medical devices and packaging, with a special emphasis on material selection, extractables and leachables, and supply chain management.   He has been an active member of various pharmaceutical working groups that have developed “best practices” for characterizing and evaluating the safety of container closure systems and packaging for several different drug dosage forms.  Some of these teams include:

  • PQRI Orally Inhaled and Nasal Drug Product E&L Working Group
  • PQRI Parenteral and Ophthalmic Drug Product E&L Working Group
  • United States Pharmacopeia (USP) Packaging and Storage Expert Committee

Dr. Ruberto was formerly the Head of Regulatory Services for the NAFTA region at Ciba Specialty Chemicals where he was responsible for worldwide notifications of new products, food contact notifications, and regulatory compliance of Ciba chemicals.    At Ciba Dr. Ruberto also served as the Director of Analytical Research.  Dr. Ruberto was employed by Ciba for fifteen years.

Dr. Ruberto received a B.S. with thesis from Stevens Institute of Technology and a Ph.D. in Analytical Chemistry from Seton Hall University.

To learn more about Dr. Ruberto, please visit www.materialneedsconsulting.com

READ
August 6, 2018

Bioanalytical Sample Preparation

For bioanalytical methods for small molecule drugs in biological matrices, sample preparation is a critical step.   A balance must be achieved between a sample preparation method that reduces interferences while still being affordable and fast.    At Pine Lake Laboratories, we have successfully developed and validated a wide variety of bioanalytical methods that achieved this balance.   We have experience with mixed mode extraction, liquid-liquid extraction, solid phase extraction, protein precipitation and enzymatic digestion sample preparation methods.   We have the experience and expertise to develop the bioanalytical method needed to help advance your drug to the patients who need it.

READ
August 2, 2018

Preparing to Adopt a Quality Agreement

A major challenge at the contract lab (CRO) is to handle Quality Agreements (QAGs) through some standardized procedure, while at the same time allowing for the diverse needs of a wide client base.  This becomes more evident when one considers that the QAG typically originates with the client, in their format, and therefore contains many client-specific idiosyncrasies.  Furthermore, the contract lab may be performing laboratory testing under GLP, GMP and/or ISO laboratory testing protocols, which, although greatly similar to one another, will each have its own unique requirements.  Procedures, to be useful, must be detailed enough for personnel to be trained on and to follow. However, to be standardized across the wide client base, they must not be too detailed.  One cannot have a procedure for each client.  Management must therefore “see the forest for the trees”.

READ
July 5, 2018

Analysis of Oligonucleotides and Pegylated Oligonucleotides in Plasma by Ion-Exchange HPLC-UV

At Pine Lake Laboratories, we have developed a standard methodology using Ion-Exchange HPLC-UV to quantitate therapeutic oligonucleotides and pegylated oligonucleotides in plasma.  This methodology has been adapted and optimized for multiple compounds across a wide variety of therapeutic areas.  For most compounds chromatographic resolution can be achieved between the parent compound and the N-1 to N-X metabolites.  Both gradient and column temperature are important in achieving good separation.  The sample preparation before HPLC analysis includes an overnight enzymatic digestion.  Carryover is a common problem but a strategy of including wash injections minimizes the impact of carryover.  All other validation parameters will meet the acceptance criteria.  One common area for instability is for the drug in plasma at room temperature.  Stability usually can be improved by keeping samples on ice during preparation or using higher concentrations of EDTA.  Validated methods have been used to support GLP and human clinical studies without any method related issues.  Most methods have column lives that exceed 1000 injections.

READ
June 30, 2018

Sources of Leachables

Leachables are compounds that migrate into a drug product from the sample container closure system (CCS) under normal storage condition.  Leachables can enter any type of drug product including solid dosage forms.  Generally, orally inhaled and nasal drug products (OINDP) and parenteral and ophthalmic drug products (PODP) are the most common drug products at high risk of leachables.

Both the primary CCS in direct contact with the drug product (metered dose inhaler, prefilled syringe, eye dropper, IV bag, HDPE bottle, LDPE ampoule, etc.) and the secondary CCS which does not contact the drug product (printed label, cardboard box, foil pouch, environmental exposure, etc.) can be sources of leachables. Leachables present a potential risk to the patient both from the toxicity of the leachable and from the possible negative impact upon stability and efficacy of the drug product.  Examples of common leachables can be seen in the table below.

READ
June 26, 2018

Exaggerated Extraction of Medical Devices

An exaggerated extraction study on a medical device is a forced extraction study to generate a complete extractable profile for hazard identification and is required by ISO 10993-12 to be exhaustive.    An overview of the exaggerated extraction study can be found below.  The key decision in study design is solvent selection.  For an exaggerated extraction study, the extraction solvents are selected based upon the anticipated tissues the device will encounter.  The extraction type is based on the solvent type and the analytical methods for analysis of extractables are the same for all extractions.  For exaggerated extractions, the extraction must be proven to be exhaustive, therefore extraction time is established experimentally.  Extractables are identified by MS and quantitated against structurally similar standards.

Overview of Exaggerated Extraction Study for Medical Devices

Solvent Extraction Type Analytical Methods 1. Polar – water, phosphate buffered saline, culture media without serum

2. Non-polar – ethanol/water, ethanol/saline, dimethyl-sulfoxide.

1.  Low boiling neat solvents : Soxhlett

2. Mixed solvents, buffers and high boiling neat solvents:  Batch extraction with agitation or circulation

1.  Volatile organic extractables by GC-MS

2.  Non-volatile organic extractables by LC-MS

3.  Inorganic extractables by ICP-MS (aqueous extract only)

READ
June 21, 2018

Microbiome Research Support

To support microbiome research, Pine Lake Laboratories has available an assay for short chain fatty acids (acetic, butyric, and propionic acid) in feces. These targeted metabolites can be used as an indicator of microbiome activity in research subjects and as biomarkers to evaluate the effect of various pharmaceutical treatments during pre-clinical and clinical trials.   The method involves extracting the short chain fatty acids from feces then analysis by direct injection GC-MS.   This method has been used to support studies in both humans and multiple animal species.   For more information, please see the white paper in our technical library titled “Short Chain Fatty Acid Analysis”

READ
June 18, 2018

FDA has finalized bioanalytical validation guidance

The FDA has finalized guidance on validation of bioanalytical methods.   Differences between the draft and final guidance, which is 10 pages longer, include a re-working of the text, a new title for Section III, which was previously named “Chromatographic methods” but is now “Bioanalytical method development and validation,” and new sections on parameters of chromatographic assays (CCs) and ligand binding assays (LBAs).

“This final guidance incorporates public comments to the revised draft published in 2013 and provides recommendations for the development, validation, and in-study use of bioanalytical methods,” FDA said. “The recommendations can be modified with justification, depending on the specific type of bioanalytical method. This guidance reflects advances in science and technology related to validating bioanalytical methods.”

READ
June 14, 2018

Evaluating the Drug Release/Elution from a Single Entity Combination Product

If the single entity combination product is not intended to mechanically infuse the drug into the patient but instead the drug is intended to passively diffuse into the patient, then the rate of drug release or elution needs to be determined. To perform this experiment, the single entirty combination product is placed in an appropriate media designed to model the target tissue. The analytical method is then used to measure the increase in drug concentration in the media over time.  The instrument conditions used are usually similar to those used for the assay; however, more sensitive methods may need to be developed if the release of drug is expected to be slow.  The method will need to be validated similar to an assay method with special consideration to sensitivity and additional ruggedness testing for the sample preparation factors that might impact the release rate.

READ
June 7, 2018

Stability Indicating Methods for Single Entity Combination Products

Just like methods for traditional drug products, the assay and related substances/degradation products methods for single entity combination products need to be proven to be stability indicating.    If the single entity combination product contains a new drug, a forced degradation study will be needed.  If results of the stability of the drug product alone are available, these results should be used to evaluate if the methods are stability indicating.  However, additional degradation experiment on the intact single entity combination product under appropriate conditions will likely be required.  If the single entity combination product contains a generic drug, literature references on the stability of the drug product can similarly be used but degradation experiment on the intact single entity combination product under appropriate conditions will still likely be required.

READ